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Fully Homomorphic Encryption

µ: message
pk: public key
c = E(µ, pk): ciphertext
Additive Homomorphism:

E(µ, pk)⊕ E(µ̃, pk) = E(µ + µ̃, pk)

Multiplicative Homomorphism:

E(µ, pk)⊙ E(µ̃, pk) = E(µ · µ̃, pk)
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R-LWE

Consider the ring of polynomials R = Z[x]/Φ(x), where Φ(x)
is cyclotomic polynomial of degree n, where n is a power of 2.

– R is the set of polynomials of degree less than n with integer
coefficients.

Addition: standard polynomial addition
Multiplication: standard polynomial multiplication and
reduction modulo Φ(x) = xn + 1

Rq denotes the ring R reduced modulo q;

– i.e., Rq = Zq[x]/Φ(x)
a ∈ Rq is a polynomial a = a0 + a1x + . . . + an−1xn−1

ai ∈ (−q/2, q/2) for i = 0, 1, . . . , n− 1
Example: q = 7, F7 = {−3,−2,−1, 0, 1, 2, 3}
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



R-LWE

Consider the ring of polynomials R = Z[x]/Φ(x), where Φ(x)
is cyclotomic polynomial of degree n, where n is a power of 2.

– R is the set of polynomials of degree less than n with integer
coefficients.

Addition: standard polynomial addition
Multiplication: standard polynomial multiplication and
reduction modulo Φ(x) = xn + 1

Rq denotes the ring R reduced modulo q;

– i.e., Rq = Zq[x]/Φ(x)
a ∈ Rq is a polynomial a = a0 + a1x + . . . + an−1xn−1

ai ∈ (−q/2, q/2) for i = 0, 1, . . . , n− 1
Example: q = 7, F7 = {−3,−2,−1, 0, 1, 2, 3}
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



R-LWE

Consider the ring of polynomials R = Z[x]/Φ(x), where Φ(x)
is cyclotomic polynomial of degree n, where n is a power of 2.

– R is the set of polynomials of degree less than n with integer
coefficients.

Addition: standard polynomial addition
Multiplication: standard polynomial multiplication and
reduction modulo Φ(x) = xn + 1

Rq denotes the ring R reduced modulo q;
– i.e., Rq = Zq[x]/Φ(x)

a ∈ Rq is a polynomial a = a0 + a1x + . . . + an−1xn−1

ai ∈ (−q/2, q/2) for i = 0, 1, . . . , n− 1
Example: q = 7, F7 = {−3,−2,−1, 0, 1, 2, 3}
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Error Distribution: DR,σ

The operation a← DR,σ outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation σ.

– In other words, it outputs a polynomial with “small”
coefficients if σ is small (e.g. σ = 3.5)

Let B0 be a bound on normal distribution with µ = 0 and σ

We can use error function erf to compute a bound for the
samples
For a normal distribution with µ = 0 and σ, erf

(
a

σ
√

2

)
is the

probability that a sample lies in (−a, a) for a positive a.
Then, erfc

(
a

σ
√

2

)
gives the probability that a sample lies

outside of (−a, a).
Pick a B0 so that erfc

(
B0

σ
√

2

)
is negligible.

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



Error Distribution: DR,σ

The operation a← DR,σ outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation σ.

– In other words, it outputs a polynomial with “small”
coefficients if σ is small (e.g. σ = 3.5)

Let B0 be a bound on normal distribution with µ = 0 and σ

We can use error function erf to compute a bound for the
samples
For a normal distribution with µ = 0 and σ, erf

(
a

σ
√

2

)
is the

probability that a sample lies in (−a, a) for a positive a.
Then, erfc

(
a

σ
√

2

)
gives the probability that a sample lies

outside of (−a, a).
Pick a B0 so that erfc

(
B0

σ
√

2

)
is negligible.
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Hard Problems

Two hard problems can be given:

– Ring-LWE Search Problem: Pick a, s ∈ Rq and e← DR,σ

and set b← as + e (mod q). The search problem is, given the
pair (a, b), to output the value s.

– Ring LWE Decision Problem: Given (a, b) where a, b ∈ Rq,
determine which of the following two cases holds:

(i) b is chosen uniformly at random (b←Rq)
(ii) b← a · s + e where s← Rq and e← DR,σ

R-LWE Problems are still hard even if s← DR,σ
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



Hard Problems

Two hard problems can be given:
– Ring-LWE Search Problem: Pick a, s ∈ Rq and e← DR,σ

and set b← as + e (mod q). The search problem is, given the
pair (a, b), to output the value s.

– Ring LWE Decision Problem: Given (a, b) where a, b ∈ Rq,
determine which of the following two cases holds:

(i) b is chosen uniformly at random (b←Rq)

(ii) b← a · s + e where s← Rq and e← DR,σ

R-LWE Problems are still hard even if s← DR,σ
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A PKC based on R-LWE - Key Generation

We pick two prime integers p and q such that p≪ q, a ring
R, and a normal distribution with standard deviation σ.
(e.g., p = 2)
Security depends on the ring dimension n, q and σ.
{p, q,R, σ}: public domain parameters.

i) s, e← DR,σ
ii) a← Rq
iii) b← as + pe (mod q)
iv) pk ← (a, b)
v) sk ← s
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A PKC based on R-LWE - Encryption

Let µ ∈ Rp be an arbitrary message

i) e0, e1, e2 ← DR,σ
ii) c0 ← be0 + pe1 + µ
iii) c1 ← ae0 + pe2

– Ciphertext: (c0, c1)
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



A PKC based on R-LWE - Encryption

Let µ ∈ Rp be an arbitrary message
i) e0, e1, e2 ← DR,σ
ii) c0 ← be0 + pe1 + µ
iii) c1 ← ae0 + pe2

– Ciphertext: (c0, c1)
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A PKC based on R-LWE - Decryption

µ← (c0 − c1s (mod q)) (mod p)
Decryption is a vector product ⟨(c0, c1), (1,−s )⟩ where

– secret key: (1,−s )
– ciphertext: (c0, c1)
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Correctness of the decryption operation

µ = (c0 − c1s (mod q)) (mod p)
= ((be0 − pe1 + µ)− (ase0 − pe2s) (mod q)) (mod p)
= (p(ee0 + e1 − e2s) + µ (mod q)) (mod p)
= (p · “small” + µ (mod q)) (mod p)

(p · “small” + µ (mod q)) (mod p) will return µ only if
∥p · “small” + µ∥∞ < ∥p · “small” + p∥∞ <

q

2 .
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Correctness Constraint

For correct decryption, we should have

∥p(ee0 + e1 − e2s) + p∥∞ <
q

2 ,

where s, e, e0, e1, e2 are sampled from the same distribution.
Also they are all in R = Z[x]/F (x)
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



Correctness Constraint

For correct decryption, we should have

∥p(ee0 + e1 − e2s) + p∥∞ <
q

2 ,

where s, e, e0, e1, e2 are sampled from the same distribution.
Also they are all in R = Z[x]/F (x)
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Correctness Constraint

∥p(ee0 + e1 − e2s + 1)∥∞ <
q

2
B0 is an upper bound for coefficients of e, e0, e1, e2 and s
where e, e0, e1, e2, s ∈ R = Z[x]/F (x)
What is the upper bound for the coefficients of ee0 and e2s?
Infinity norm of a polynomial ∥e∥∞ is the maximum of its
coefficients.
∥e∥∞, ∥e0∥∞, ∥e1∥∞, ∥e2∥∞, ∥s∥∞ < B0
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Correctness Constraint - Example

R = Z[x]/Φ8(x) (m = 8, n = 4)
Φ8(x) = x4 + 1
c(x) = a(x)b(x) where a(x), b(x), c(x) ∈ R

– c0 = a0b0 − a1b3 − a2b2 − a3b1
– c1 = a0b1 + a1b0 − a2b3 − a3b2
– c2 = a0b2 + a1b1 + a2b0 − a3b3
– c3 = a0b3 + a1b2 + a2b1 + a3b0

Every coefficient in ci is the sum of four (n = 4) product
terms.
An upper bound for a product term is B2

0

An upper bound for a coefficient is then nB2
0 (a bit loose

upper bound)
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



Correctness Constraint - Example

R = Z[x]/Φ8(x) (m = 8, n = 4)
Φ8(x) = x4 + 1

c(x) = a(x)b(x) where a(x), b(x), c(x) ∈ R

– c0 = a0b0 − a1b3 − a2b2 − a3b1
– c1 = a0b1 + a1b0 − a2b3 − a3b2
– c2 = a0b2 + a1b1 + a2b0 − a3b3
– c3 = a0b3 + a1b2 + a2b1 + a3b0

Every coefficient in ci is the sum of four (n = 4) product
terms.
An upper bound for a product term is B2

0

An upper bound for a coefficient is then nB2
0 (a bit loose

upper bound)
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Correctness Constraint - Cont.

Let η = ee0 + e1 − e2s

An upper bound for η is, then, nB2
0 + B0 + nB2

0

∥pη + µ∥∞ < p(nB2
0 + B0 + nB2

0 + 1) <
q

2 ⇒ q >

2p(2nB2
0 + B0 + 1)

Let B = (2nB2
0 + B0) bound for η then q > 2p(B + 1)
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



Fully Homomorphic Encryption

µ ∈ Rp

c = E(µ, pk)
c ∈ R2

q

Additive Homomorphism:

E(µ, pk)⊕ E(µ̃, pk) = E(µ + µ̃, pk)

Multiplicative Homomorphism:

E(µ, pk)⊙ E(µ̃, pk) = E(µ · µ̃, pk)
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Additive Homomorphism

Our R-LWE-based PKC system is additively homomorphic

– Consider two ciphertexts c and c̃, which encrypts µ and µ̃,
respectively,

c = (c0, c1)
c̃ = (c̃0, c̃1)

– Consider also the decryption operation

⟨(c0, c1), (1,−s)⟩ = (c0 − sc1 = µ + pη (mod q)) (mod p)

⟨(c̃0, c̃1), (1,−s)⟩ = (c̃0 − sc̃1 = µ̃ + pη̃ (mod q)) (mod p)
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



Additive Homomorphism

Our R-LWE-based PKC system is additively homomorphic
– Consider two ciphertexts c and c̃, which encrypts µ and µ̃,

respectively,

c = (c0, c1)
c̃ = (c̃0, c̃1)

– Consider also the decryption operation

⟨(c0, c1), (1,−s)⟩ = (c0 − sc1 = µ + pη (mod q)) (mod p)

⟨(c̃0, c̃1), (1,−s)⟩ = (c̃0 − sc̃1 = µ̃ + pη̃ (mod q)) (mod p)
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⟨(c0, c1), (1,−s)⟩ = (c0 − sc1 = µ + pη (mod q)) (mod p)
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Additive Homomorphism

Our R-LWE-based PKC system is additively homomorphic

– Now, apply addition to ciphertexts c + c̃ and decrypt

⟨c + c̃, (1,−s)⟩ = (c0 + c̃0 − sc1 − sc̃1 (mod q)) (mod p)
= (c0 − sc1 + c̃0 − sc̃1 (mod q)) (mod p)
= (µ + pη + µ̃ + pη̃ (mod q)) (mod p)
= (µ + µ̃ + p(η + η̃) (mod q)) (mod p)

– So long as ∥p(η + η̃) + (µ + µ̃)∥∞ <
q

2 , the modulo q

reduction does not happen ⇒ CORRECT decryption
– An upper bound for both pη and pη̃ is pB
– Then, an upper bound for p(η + η̃) is the 2pB
– The noise increases linearly
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Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryption



Additive Homomorphism

Our R-LWE-based PKC system is additively homomorphic
– Now, apply addition to ciphertexts c + c̃ and decrypt

⟨c + c̃, (1,−s)⟩ = (c0 + c̃0 − sc1 − sc̃1 (mod q)) (mod p)
= (c0 − sc1 + c̃0 − sc̃1 (mod q)) (mod p)
= (µ + pη + µ̃ + pη̃ (mod q)) (mod p)
= (µ + µ̃ + p(η + η̃) (mod q)) (mod p)

– So long as ∥p(η + η̃) + (µ + µ̃)∥∞ <
q

2 , the modulo q

reduction does not happen ⇒ CORRECT decryption
– An upper bound for both pη and pη̃ is pB

– Then, an upper bound for p(η + η̃) is the 2pB
– The noise increases linearly
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Homomorphic addition of l ciphertexts

µ(1), . . . , µ(l) → c(1), . . . , c(l)〈
c(1) + . . . + c(l), (1, −s)

〉
= µ(1) + . . . + µ(l) + p(η(1) + . . . + η(l))

An upper bound for p(η(1) + . . . + η(l)) is then lpB

Eventually, the error term will exceed q

2 depending on l and p.

This means that we can perform only a limited number of
homomorphic additions of ciphertexts, whereby this number is
determined mainly by p and q.
This is what is known as SOMEWHAT HOMOMORPHIC
ENCRYPTION system (SWHE or SHE)
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Multiplicative Homomorphism

Our R-LWE-based PKC supports homomorphic multiplication
of ciphertexts

– Suppose two ciphertexts c = (c0, c1) and c̃ = (c̃0, c̃1)
encrypting µ and µ̃, respectively.
Define tensor product of c and c̃ as

c⊗ c̃ = (c0c̃0, c0c̃1, c1c̃0, c1c̃1) = (d0, d1, d2, d3)
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Multiplicative Homomorphism - Decryption for
Mutiplication of Ciphertexts

Now, we have four-dimensional ciphertext, which will decrypt
with respect to the “secret key” vector
(1,−s)⊗ (1,−s) = (1,−s,−s, s2) since

〈
c⊗ c̃, (1,−s,−s, s2)

〉
= (d0 − d1s− d2s + d3s2 (mod q)) (mod p)
= c0c̃0 − c0c̃1s− c1c̃0s + c1c̃1s2

= (c0 − c1s)(c̃0 − c̃1s)(modq)
= (µ + pη)(µ̃ + pη̃)(modq)
= (µµ̃ + p(µη̃ + µ̃η + pηη̃) (mod q)) (mod p)
= (µµ̃ + pηf (mod q)) (mod p)

Therefore, c⊗ c̃ is an encryption of µµ̃ under the secret key
(1,−s,−s, s2)
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Noise Increases Quadratically

〈
c⊗ c̃, (1,−s,−s, s2)

〉
= (µµ̃ + pηf (mod q)) (mod p)

ηf = µη̃ + µ̃η + pηη̃

For correct decryption ∥µµ̃ + pηf∥∞ <
q

2
∥µ∥∞ , ∥µ̃∥∞ < p, ∥µµ̃∥∞ < p2 and ∥η∥∞ , ∥η̃∥∞ < B.
∥ηf∥∞ < pB + pB + pB2

∥µµ̃ + pηf∥∞ < p2 + p2(2B + B2) <
q

2
q > 2p2(B2 + 2B + 1)
Noise increases quadratically.
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