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Fully Homomorphic Encryption

@ L1 message
o pk: public key
e ¢ = E(u,pk): ciphertext
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Fully Homomorphic Encryption

@ [1: message

o pk: public key

e ¢ = E(u,pk): ciphertext
o Additive Homomorphism:

E(u, pk) ® E(, pk) = E(p + fi, pk)
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Fully Homomorphic Encryption

[L: message

pk: public key

¢ = E(u,pk): ciphertext
Additive Homomorphism:

E(u, pk) ® E(, pk) = E(p + fi, pk)

o Multiplicative Homomorphism:

E(p, pk) © E(fi,pk) = E(u - i, pk)
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R-LWE

Erkay Savas




R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.
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R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.

— R is the set of polynomials of degree less than n with integer
coefficients.
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R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.

— R is the set of polynomials of degree less than n with integer

coefficients.
o Addition: standard polynomial addition
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R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.

— R is the set of polynomials of degree less than n with integer
coefficients.
o Addition: standard polynomial addition
o Multiplication: standard polynomial multiplication and
reduction modulo ®(z) = z™ + 1
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R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.

— R is the set of polynomials of degree less than n with integer
coefficients.

o Addition: standard polynomial addition
o Multiplication: standard polynomial multiplication and
reduction modulo ®(z) = z™ + 1

@ R, denotes the ring R reduced modulo g;
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R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.

— R is the set of polynomials of degree less than n with integer
coefficients.

o Addition: standard polynomial addition
o Multiplication: standard polynomial multiplication and
reduction modulo ®(z) = z™ + 1

@ R, denotes the ring R reduced modulo g;
- ie, Ry =Z,4[z]/P(z)
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R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.

— R is the set of polynomials of degree less than n with integer
coefficients.

o Addition: standard polynomial addition
o Multiplication: standard polynomial multiplication and
reduction modulo ®(z) = z™ + 1
@ R, denotes the ring R reduced modulo g;
- ie, Ry =Z,4[z]/P(z)

o a € R, is a polynomial a = ag + a1z + ... + ap_12""*
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R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.

— R is the set of polynomials of degree less than n with integer
coefficients.
o Addition: standard polynomial addition
o Multiplication: standard polynomial multiplication and
reduction modulo ®(z) = z™ + 1

@ R, denotes the ring R reduced modulo g;
- ie, Ry =Z,4[z]/P(z)
e a € Ry is apolynomial a =ag+a1z+... +ap_12""
e a; € (—q/2,q/2) fori=0,1,...,n—1

1
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R-LWE

o Consider the ring of polynomials R = Z[x]/®(z), where ®(z)
is cyclotomic polynomial of degree n, where n is a power of 2.

— R is the set of polynomials of degree less than n with integer
coefficients.

o Addition: standard polynomial addition
o Multiplication: standard polynomial multiplication and
reduction modulo ®(z) = z™ + 1
@ R, denotes the ring R reduced modulo g;
- ie, Ry =Z,4[z]/P(z)
o a € R, is a polynomial a = ag + a1z + ... + ap_12""*
e a; € (—q/2,q/2) fori=0,1,...,n—1

)

o Example: ¢=7, F; ={-3,-2,-1,0,1,2,3}

Erkay Savas A Very Brief Introduction to Lattice-Based Homomorphic Encryp



Error Distribution: Dy,
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Error Distribution: Dy,

@ The operation a <— Dr , outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation o.
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Error Distribution: Dy,

@ The operation a <— Dr , outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation o.

— In other words, it outputs a polynomial with “small”
coefficients if o is small (e.g. 0 = 3.5)
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Error Distribution: Dy,

@ The operation a <— Dr , outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation o.

— In other words, it outputs a polynomial with “small”
coefficients if o is small (e.g. 0 = 3.5)

@ Let By be a bound on normal distribution with =0 and o
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Error Distribution: Dy,

@ The operation a <— Dr , outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation o.

— In other words, it outputs a polynomial with “small”
coefficients if o is small (e.g. 0 = 3.5)

@ Let By be a bound on normal distribution with =0 and o

@ We can use error function erf to compute a bound for the
samples
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Error Distribution: Dy,

@ The operation a <— Dr , outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation o.

— In other words, it outputs a polynomial with “small”
coefficients if o is small (e.g. 0 = 3.5)
@ Let By be a bound on normal distribution with =0 and o
@ We can use error function erf to compute a bound for the
samples

a

@ For a normal distribution with ¢+ = 0 and o, erf (m/i) is the

probability that a sample lies in (—a,a) for a positive a.
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Error Distribution: Dy,

@ The operation a <— Dr , outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation o.

— In other words, it outputs a polynomial with “small”
coefficients if o is small (e.g. 0 = 3.5)
@ Let By be a bound on normal distribution with =0 and o

@ We can use error function erf to compute a bound for the
samples

a

@ For a normal distribution with ¢+ = 0 and o, erf (m/i) is the

probability that a sample lies in (—a,a) for a positive a.
@ Then, erfc (%ﬁ) gives the probability that a sample lies
outside of (—a,a).
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Error Distribution: Dy,

@ The operation a <— Dr , outputs a polynomial in R, whose
coefficients are sampled from a normal distribution with 0
mean and standard deviation o.

— In other words, it outputs a polynomial with “small”
coefficients if o is small (e.g. 0 = 3.5)
@ Let By be a bound on normal distribution with =0 and o

@ We can use error function erf to compute a bound for the
samples

a

@ For a normal distribution with ¢+ = 0 and o, erf (m/i) is the

probability that a sample lies in (—a,a) for a positive a.
@ Then, erfc (%ﬁ) gives the probability that a sample lies
outside of (—a,a).

@ Pick a By so that erfc (UB—\/%) is negligible.
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Hard Problems

@ Two hard problems can be given:

Erkay Savas A Very Brief Introduction to Lattice-Based Homomorphic Encryp



Hard Problems

@ Two hard problems can be given:

— Ring-LWE Search Problem: Pick a,s € R, and e < Dr ,
and set b < as + e (mod ¢). The search problem is, given the
pair (a,b), to output the value s.
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Hard Problems

@ Two hard problems can be given:
- Ring-LWE Search Problem: Pick a,s € R, and ¢ <~ Dg ,
and set b < as + e (mod ¢). The search problem is, given the

pair (a,b), to output the value s.
- Ring LWE Decision Problem: Given (a,b) where a,b € R,
determine which of the following two cases holds:
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Hard Problems

@ Two hard problems can be given:
- Ring-LWE Search Problem: Pick a,s € R, and ¢ <~ Dg ,
and set b < as + e (mod ¢). The search problem is, given the

pair (a,b), to output the value s.
- Ring LWE Decision Problem: Given (a,b) where a,b € R,
determine which of the following two cases holds:

@ b is chosen uniformly at random (b + R)
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Hard Problems

@ Two hard problems can be given:
- Ring-LWE Search Problem: Pick a,s € R, and ¢ <~ Dg ,
and set b < as + e (mod ¢). The search problem is, given the

pair (a,b), to output the value s.
- Ring LWE Decision Problem: Given (a,b) where a,b € R,
determine which of the following two cases holds:

@ b is chosen uniformly at random (b <— R,)
@ b+ a-s+ewheres« Ryand e+ Dr,
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Hard Problems

@ Two hard problems can be given:
- Ring-LWE Search Problem: Pick a,s € R, and ¢ <~ Dg ,
and set b < as + e (mod ¢). The search problem is, given the

pair (a,b), to output the value s.
- Ring LWE Decision Problem: Given (a,b) where a,b € R,
determine which of the following two cases holds:

@ b is chosen uniformly at random (b <— R,)
@ b+ a-s+ewheres« Ryand e+ Dr,

@ R-LWE Problems are still hard even if s <— Dg ,

Erkay Savas A Very Brief Introduction to Lattice-Based Homomorphic Encryp



A PKC based on R-LWE - Key Generation
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A PKC based on R-LWE - Key Generation

@ We pick two prime integers p and ¢ such that p < ¢, a ring
‘R, and a normal distribution with standard deviation o.

(eg.p=2)
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A PKC based on R-LWE - Key Generation

@ We pick two prime integers p and ¢ such that p < ¢, a ring
‘R, and a normal distribution with standard deviation o.

(e, p=2)
@ Security depends on the ring dimension n,q and o.
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A PKC based on R-LWE - Key Generation

@ We pick two prime integers p and ¢ such that p < ¢, a ring
‘R, and a normal distribution with standard deviation o.
(eg., p=2)

@ Security depends on the ring dimension n,q and o.

e {p,q,R,o}: public domain parameters.
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A PKC based on R-LWE - Key Generation

@ We pick two prime integers p and ¢ such that p < ¢, a ring
‘R, and a normal distribution with standard deviation o.
(eg. p=2)

@ Security depends on the ring dimension n,q and o.

e {p,q,R,o}: public domain parameters.

Q s,e+ Dry
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A PKC based on R-LWE - Key Generation

@ We pick two prime integers p and ¢ such that p < ¢, a ring
‘R, and a normal distribution with standard deviation o.
(eg., p=2)

@ Security depends on the ring dimension n,q and o.

e {p,q,R,o}: public domain parameters.

Q s,e+ Dry
D a+R,
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A PKC based on R-LWE - Key Generation

@ We pick two prime integers p and ¢ such that p < ¢, a ring
‘R, and a normal distribution with standard deviation o.
(eg. p=2)

@ Security depends on the ring dimension n,q and o.

e {p,q,R,o}: public domain parameters.

Q s,e+ Dry
D a+R,
@ b+« as+ pe (mod q)
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A PKC based on R-LWE - Key Generation

@ We pick two prime integers p and ¢ such that p < ¢, a ring
‘R, and a normal distribution with standard deviation o.
(eg. p=2)

@ Security depends on the ring dimension n,q and o.

e {p,q,R,o}: public domain parameters.

Q s,e+ Dry

D a+R,

@ b+« as+ pe (mod q)
@ pk « (a,b)
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A PKC based on R-LWE - Key Generation

@ We pick two prime integers p and ¢ such that p < ¢, a ring
‘R, and a normal distribution with standard deviation o.
(eg., p=2)

@ Security depends on the ring dimension n,q and o.

e {p,q,R,o}: public domain parameters.

s,e 4 Dr 4

a <+ R,

b < as + pe (mod q)

pk + (a,b)

sk < s

eeéeee

Erkay Savas A Very Brief Introduction to Lattice-Based Homomorphic Encryp



A PKC based on R-LWE - Encryption
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A PKC based on R-LWE - Encryption

@ Let 4 € R, be an arbitrary message
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A PKC based on R-LWE - Encryption

@ Let 4 € R, be an arbitrary message
Q ep,e1,62 +— Dro

Erkay Savas A Very Brief Introduction to Lattice-Based Homomorphic Encryp



A PKC based on R-LWE - Encryption

@ Let 4 € R, be an arbitrary message

Q ep,e1,62 ¢+ Dry
Q@ ¢y beyg+per +pu
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A PKC based on R-LWE - Encryption

@ Let 4 € R, be an arbitrary message
Q ep,e1,62 +— Dro
Q@ ¢y beyg+per +pu
@ c1 < aey + pes
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A PKC based on R-LWE - Encryption

@ Let 4 € R, be an arbitrary message

Q ep,e1,62 +— Dro
Q@ ¢y beyg+per +pu
@ ¢ < aeg+ pes

— Ciphertext: (cq,c1)
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A PKC based on R-LWE - Decryption
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A PKC based on R-LWE - Decryption

@ i+ (co—c1s (mod q)) (mod p)
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A PKC based on R-LWE - Decryption

® p< (co—c1s (mod g)) (mod p)
@ Decryption is a vector product ((cop,c1), (1, —s )) where
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A PKC based on R-LWE - Decryption

® p< (co—c1s (mod g)) (mod p)
@ Decryption is a vector product ((cop,c1), (1, —s )) where
— secret key: (1,—s)
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A PKC based on R-LWE - Decryption

@ i+ (co—c1s (mod q)) (mod p)

@ Decryption is a vector product ((cop,c1), (1, —s )) where
— secret key: (1,—s)
— ciphertext: (cg,c1)
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Correctness of the decryption operation
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Correctness of the decryption operation

co—c1s (mod g)) (mod p)
(bep — pe1 + p) — (aseg — pezs) (mod q)) (mod p)
pleeo +e1 —ezs) +p (mod g)) (mod p)

p=(
= (
= (
= (

p-“small”+ p  (mod q)) (mod p)
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Correctness of the decryption operation

co—c1s (mod g)) (mod p)
(bep — pe1 + p) — (aseg — pezs) (mod q)) (mod p)
pleeo +e1 —ezs) +p (mod g)) (mod p)

p=(
= (
= (
= (

p-“small”+ p  (mod q)) (mod p)

e (p-“small”+ p (mod ¢)) (mod p) will return p only if

lp- “small” + pf| ., < ||p- “small” +p||, < %
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Correctness Constraint
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Correctness Constraint

@ For correct decryption, we should have

q

lp(eeo +e1 — eas) +pll o, < >

where s, e, eg, €1, ea are sampled from the same distribution.
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Correctness Constraint

@ For correct decryption, we should have

q

lp(eeo +e1 — eas) +pll o, < >

where s, e, eg, €1, ea are sampled from the same distribution.
@ Also they are all in R = Z[x]/F(z)
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Correctness Constraint
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Correctness Constraint

o [[p(eeg+e1 —eas+1)||, < g
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Correctness Constraint

o [[p(eeg+e1 —eas+1)||, < g

@ By is an upper bound for coefficients of e,eg,e1,e2 and s
where e, e, e1,e2,s € R = Z[z]/F(x)
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Correctness Constraint

o [[p(eeg+e1 —eas+1)||, < g

@ By is an upper bound for coefficients of e,eg,e1,e2 and s
where e, e, e1,e2,s € R = Z[z]/F(x)
@ What is the upper bound for the coefficients of eeg and eos?
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Correctness Constraint

o [[p(eeg+e1 —eas+1)||, < g

@ By is an upper bound for coefficients of e,eg,e1,e2 and s
where e, e, e1,e2,s € R = Z[z]/F(x)
@ What is the upper bound for the coefficients of eeg and eos?

@ Infinity norm of a polynomial ||e|| is the maximum of its
coefficients.
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Correctness Constraint

lp(eeo +e1 —eas + 1) < g

@ By is an upper bound for coefficients of e,eg,e1,e2 and s
where e, e, e1,e2,s € R = Z[z]/F(x)

What is the upper bound for the coefficients of eey and egs?

Infinity norm of a polynomial ||e|| is the maximum of its
coefficients.

lellos leolloos llerlloos le2lloos sl < Bo
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Correctness Constraint - Example
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Correctness Constraint - Example

o R =12Z[z]/Ps(x) (m=8,n=4)
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Correctness Constraint - Example

o R =7Z[z]/Psg(x) (m=8,n=4)
o Og(z)=at+1
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Correctness Constraint - Example

o R =7Z[z]/Psg(x) (m=8,n=4)
o Og(x) =2t +1
o c¢(z) = a(z)b(x) where a(x),b(x),c(z) € R
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Correctness Constraint - Example

o R =7Z[z]/Psg(x) (m=8,n=4)
o Og(x) =2t +1
o c¢(z) = a(z)b(x) where a(x),b(x),c(z) € R

- Cy — aobo — a1b3 — a2b2 — (Igbl
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Correctness Constraint - Example

o R =12Z[z]/Ps(x) (m=8,n=4)

o Og(x) =2t +1

o c(x) = a(z)b(z) where a(z),b(x),c(z) € R
— ¢g = agby — a1bg — asby — azby
— ¢1 = agb1 + a1by — azbs — azby
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Correctness Constraint - Example

o R =12Z[z]/Ps(x) (m=8,n=4)

o Og(x) =2t +1

o c(x) = a(z)b(z) where a(z),b(x),c(z) € R
— ¢g = agby — a1bg — asby — azby
— c1 = agby + a1bg — asbz — azby
— c2 = agbz + a1b1 + azby — azbs
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Correctness Constraint - Example

o R =7Z[z]/Psg(x) (m=8,n=4)
o Og(x) =2t +1
o c(x) = a(z)b(z) where a(z),b(x),c(z) € R
- Cy — aobo — a1b3 — a2b2 — (Igbl
— ¢1 = agb; + a1bg — asbs — asbs
— ¢9 = agbs + a1by + asbg — asbs
— ¢3 = agbs + a1bs + azb1 + asbo
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Correctness Constraint - Example

o R =7Z[z]/Psg(x) (m=8,n=4)
o Og(x) =2t +1
o c(x) = a(z)b(z) where a(z),b(x),c(z) € R
- Cy — aobo — a1b3 — a2b2 — (Igbl
— ¢1 = agb; + a1bg — asbs — asbs
— ¢9 = agbs + a1by + asbg — asbs
— ¢3 = agbs + a1bs + azb1 + asbo

e Every coefficient in ¢; is the sum of four (n = 4) product
terms.
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Correctness Constraint - Example

R = Z[z]/Pg(x) (m = 8,n =4)

o Og(x) =2t +1

o c(x) = a(z)b(z) where a(z),b(x),c(z) € R
- Cy — aobo — a1b3 — a2b2 — (Igbl

— ¢1 = agb; + a1bg — asbs — asbs

— ¢9 = agbs + a1by + asbg — asbs

— ¢3 = agbs + a1bs + azb1 + asbo

Every coefficient in ¢; is the sum of four (n = 4) product
terms.

An upper bound for a product term is B2
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Correctness Constraint - Example

R = Z[z]/Pg(x) (m = 8,n =4)

o Og(x) =2t +1

o c(x) = a(z)b(z) where a(z),b(x),c(z) € R
- Cy — aobo — a1b3 — a2b2 — (Igbl

— ¢1 = agb; + a1bg — asbs — asbs

— ¢9 = agbs + a1by + asbg — asbs

— ¢3 = agbs + a1bs + azb1 + asbo

Every coefficient in ¢; is the sum of four (n = 4) product
terms.

An upper bound for a product term is B2

(]

An upper bound for a coefficient is then nB2 (a bit loose
upper bound)
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Correctness Constraint - Cont.
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Correctness Constraint - Cont.

@ Let n =eeqg+e1 — e3s
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Correctness Constraint - Cont.

@ Let n =eeqg+e1 — e3s
@ An upper bound for 7 is, then, nB2 + By + nB2
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Correctness Constraint - Cont.

@ Let n =eeqg+e1 — e3s

@ An upper bound for 7 is, then, nB2 + By + nB2

o lpn+plly <pnBE+Bo+nBi+1) <L g>

2
2p(2nB3 + By + 1)
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Correctness Constraint - Cont.

@ Let n =eeqg+e1 — e3s

@ An upper bound for 7 is, then, nB2 + By + nB2

o lpn+plly <pnBE+Bo+nBi+1) <L g>

2
2p(2nB3 + By + 1)
o Let B = (2nB2 + By) bound for 1 then ¢ > 2p(B + 1)
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Fully Homomorphic Encryption
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Fully Homomorphic Encryption

o neR,
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Fully Homomorphic Encryption

o neR,
o c= E(u,pk)
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Fully Homomorphic Encryption

o neR,
o c= E(u,pk)
° CER(%
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Fully Homomorphic Encryption

o neR,

o ¢ = E(u,pk)

@ ce Rg

o Additive Homomorphism:

E(u, pk) ® E(, pk) = E(p + fi, pk)
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Fully Homomorphic Encryption

weER,

¢ = E(p,pk)
céE Rg
Additive Homomorphism:

E(u, pk) ® E(, pk) = E(p + fi, pk)

o Multiplicative Homomorphism:

E(p, pk) © E(fi, pk) = E(u - i, pk)
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic

— Consider two ciphertexts ¢ and ¢, which encrypts p and pz,
respectively,

Erkay Savas A Very Brief Introduction to Lattice-Based Homomorphic Encryp



Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic

— Consider two ciphertexts ¢ and ¢, which encrypts p and pz,
respectively,

e ¢ =(co,c1)
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic

— Consider two ciphertexts ¢ and ¢, which encrypts p and pz,
respectively,

e ¢ =(co,c1)
e ¢=(co,c1)
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic

— Consider two ciphertexts ¢ and ¢, which encrypts p and pz,
respectively,

e ¢ =(co,c1)
e ¢=(co,c1)

— Consider also the decryption operation
((co,c1), (1, =5)) = (co — sc1 = p+pn  (mod q)) (mod p)

((co,¢1), (L, =s)) = (co —sc1 = p+pi  (mod q)) (mod p)
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic
— Now, apply addition to ciphertexts ¢ + ¢ and decrypt

{(c+¢(1,-5)) = (co + o —sc1 —sc1 (mod q)) (mod p)

p+pn+p+py (modgq)) (mod p)

= (

= (CO — SC1 + CAb - 561 (mOd q)) (mOd p)
= (

=(u+a+pn+7) (modg)) (mod p)
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic
— Now, apply addition to ciphertexts ¢ + ¢ and decrypt

{(c+¢(1,-5)) = (co + o —sc1 —sc1 (mod q)) (mod p)

p+pn+p+py (modgq)) (mod p)

= (

= (CO — SC1 + CAb - 561 (mOd q)) (mOd p)
= (

=(u+a+pn+7) (modg)) (mod p)

— So long as [[p(n+n) + (1 + 1)l < g the modulo ¢
reduction does not happen = CORRECT decryption
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic
Now, apply addition to ciphertexts ¢ + ¢ and decrypt

(c+7¢(1,-8)) = (co+ ¢ — sc1 —s¢1 (mod q)) (mod p)
=(co—sc1 +¢é —sc; (mod q)) (mod p)
=(u+pn+p+py (modg)) (mod p)

= (

p+p+pm+1n) (modg)) (modp)

So long as |[p(n + 1) + (1 + )| o, < g the modulo ¢
reduction does not happen = CORRECT decryption
An upper bound for both pn and pn is pB
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic
Now, apply addition to ciphertexts ¢ + ¢ and decrypt

(c+7¢(1,-8)) = (co+ ¢ — sc1 —s¢1 (mod q)) (mod p)
=(co—sc1 +¢é —sc; (mod q)) (mod p)
=(u+pn+p+py (modg)) (mod p)

= (

p+p+pm+1n) (modg)) (modp)

So long as |[p(n + 1) + (1 + )| o, < g the modulo ¢

reduction does not happen = CORRECT decryption
An upper bound for both pn and pn is pB
— Then, an upper bound for p(n + 7)) is the 2pB
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Additive Homomorphism

@ Our R-LWE-based PKC system is additively homomorphic
— Now, apply addition to ciphertexts ¢ + ¢ and decrypt

(c+7¢(1,-8)) = (co+ ¢ — sc1 —s¢1 (mod q)) (mod p)
=(co—sc1 +¢é —sc; (mod q)) (mod p)
=(u+pn+p+py (modg)) (mod p)

= (

p+p+pm+1n) (modg)) (modp)

So long as |[p(n + 1) + (1 + )| o, < g the modulo ¢
reduction does not happen = CORRECT decryption
An upper bound for both pn and pn is pB

— Then, an upper bound for p(n + 7)) is the 2pB

— The noise increases linearly
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Homomorphic addition of [ ciphertexts

pD o u® e D
<C(1) +...+c(l),(1,—s)> =p® 4+ 4 u® _A,_p(n(l) +~-~+77(l))
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Homomorphic addition of [ ciphertexts

p W =@ D
(W 4. +c®,(1,-9)) =p® + ...+ O 4+ pn® + ... 47®)
o An upper bound for p(n" + ... +1®) is then IpB
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Homomorphic addition of [ ciphertexts

p W =@ D
(W 4. +c®,(1,-9)) =p® + ...+ O 4+ pn® + ... 47®)
o An upper bound for p(n" + ... +1®) is then IpB

@ Eventually, the error term will exceed g depending on [ and p.
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Homomorphic addition of [ ciphertexts

p W =@ D
(W 4. +c®,(1,-9)) =p® + ...+ O 4+ pn® + ... 47®)
o An upper bound for p(n" + ... +1®) is then IpB

@ Eventually, the error term will exceed g depending on [ and p.

@ This means that we can perform only a limited number of
homomorphic additions of ciphertexts, whereby this number is
determined mainly by p and gq.
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Homomorphic addition of [ ciphertexts

p D M D
<C(1) +...+c(l),(1,—s)> =D+ w4 p® 4+ 4@

o An upper bound for p(n" + ... +1®) is then IpB
@ Eventually, the error term will exceed g depending on [ and p.

@ This means that we can perform only a limited number of
homomorphic additions of ciphertexts, whereby this number is
determined mainly by p and gq.

@ This is what is known as SOMEWHAT HOMOMORPHIC
ENCRYPTION system (SWHE or SHE)
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Multiplicative Homomorphism
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Multiplicative Homomorphism

@ Our R-LWE-based PKC supports homomorphic multiplication
of ciphertexts
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Multiplicative Homomorphism

@ Our R-LWE-based PKC supports homomorphic multiplication
of ciphertexts

— Suppose two ciphertexts ¢ = (cg,¢1) and ¢ = (¢, ¢1)
encrypting p and i, respectively.
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Multiplicative Homomorphism

@ Our R-LWE-based PKC supports homomorphic multiplication
of ciphertexts
— Suppose two ciphertexts ¢ = (cg,¢1) and ¢ = (¢, ¢1)
encrypting p and i, respectively.
e Define tensor product of ¢ and ¢ as

c® ¢ = (coCo, CoC1,C1C0,c1€1) = (do, dy,d2, ds)
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Multiplicative Homomorphism - Decryption for

Mutiplication of Ciphertexts
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Multiplicative Homomorphism - Decryption for

Mutiplication of Ciphertexts

@ Now, we have four-dimensional ciphertext, which will decrypt
with respect to the “secret key" vector
(1,-5) ® (1,—s) = (1, —s, —s, %) since
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Multiplicative Homomorphism - Decryption for

Mutiplication of Ciphertexts

@ Now, we have four-dimensional ciphertext, which will decrypt

with respect to the “secret key" vector

(1,-5) ® (1,—s) = (1, —s, —s, %) since

(c®¢, (1, —s,—8,5%)) = (do — dis — das + d3s®> (mod ¢)) (mod p)
= €pCp — CoC18 — €108 + €118
= (co — c158)(¢o — €18)(modgq)
= (p+pn) (i + pi)(modq)
= (pfe+ p(pi) + fin + pni) - (mod q))  (mod p)
= (ufi+png  (mod g)) (mod p)
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Multiplicative Homomorphism - Decryption for

Mutiplication of Ciphertexts

@ Now, we have four-dimensional ciphertext, which will decrypt

with respect to the “secret key" vector

(1,-5) ® (1,—s) = (1, —s, —s, %) since

(c®¢, (1, —s,—8,5%)) = (do — dis — das + d3s®> (mod ¢)) (mod p)
= €pCp — CoC18 — €108 + €118
= (co — c158)(¢o — €18)(modgq)
= (p+pn) (i + pi)(modq)
= (pfe+ p(pi) + fin + pni) - (mod q))  (mod p)
= (ufi+png  (mod g)) (mod p)

@ Therefore, ¢ ® ¢ is an encryption of up under the secret key
(1,—s,—s,5%)
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Noise Increases Quadratically
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Noise Increases Quadratically

o (¢c®¢,(1,—s,—s,5%)) = (ufi+pny (mod ¢)) (mod p)

Erkay Savas A Very Brief Introduction to Lattice-Based Homomorphic Encryp



Noise Increases Quadratically

o (c®¢ (1,~s,—5,5%) = (uii+pny (mod g)) (mod p)
® ny = un+ un + pnn
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Noise Increases Quadratically

o (c®¢ (1,~s,—5,5%) = (uii+pny (mod g)) (mod p)
® ny = un+ un + pnn

e For correct decryption ||uiz + pny|l . < %
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Noise Increases Quadratically

o (c®¢ (1,~s,—5,5%) = (uii+pny (mod g)) (mod p)
® ny = un+ un + pnn

e For correct decryption ||uiz + pny|l . < %

O [|pllso s 1Ailloe <P llphillo < p? and [0l 1177l < B
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Noise Increases Quadratically

<C 02y Ea (L —S, =S, 82)> = (Mﬁ + p77f (mOd Q)) (HlOd p)
ng = p1 + pn + pnn

For correct decryption || u + pnyll ., < %

[elloo s lloe < 20 litllog < P? and 0]l 177]] < B-
Infll, <pB+pB+ pB?
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Noise Increases Quadratically

<C 02y Ea (L —S, =S, 82)> = (Mﬁ + p77f (mOd Q)) (HlOd p)
ng = p1 + pn + pnn

For correct decryption || u + pnyll ., < %

o [[illoe: il oo < 2 il oo < p* and ]|, 177l < B
o |nsll.. < pB+pB+pB?

- q
o |ui+pnyll,, <p*+p*(2B+ B?) < 5
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Noise Increases Quadratically

<C 02y Ea (L —S, =S, 82)> = (Mﬁ + p77f (mOd Q)) (HlOd p)
ng = p1 + pn + pnn

For correct decryption || u + pnyll ., < %

o [[illoe: il oo < 2 il oo < p* and ]|, 177l < B
o |nsll.. < pB+pB+pB?
N q
o |ui+pnyll,, <p*+p*(2B+ B?) < 5
o q>2p*(B?+2B+1)
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Noise Increases Quadratically

<C 02y Ea (L —S, =S, 82)> = (Mﬁ + p77f (mOd Q)) (HlOd p)
ng = p1 + pn + pnn

For correct decryption || u + pnyll ., < %

o [[illoe: il oo < 2 il oo < p* and ]|, 177l < B
o |nsll.. < pB+pB+pB?
N q
o |ui+pnyll,, <p*+p*(2B+ B?) < 5
o q>2p*(B?+2B+1)

Noise increases quadratically.
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