A Very Brief Introduction to Lattice-Based Homomorphic Encryption

Erkay Savaş

Department of Computer Science and Engineering Sabancı University

May 6, 2023

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

伺 ト イ ヨ ト イ ヨ

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

同 ト 4 ヨ ト 4 ヨ ト

- μ : message
- pk: public key
- $c = E(\mu, pk)$: ciphertext

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- μ: message
- pk: public key
- $c = E(\mu, pk)$: ciphertext
- Additive Homomorphism:

$$E(\mu, pk) \oplus E(\widetilde{\mu}, pk) = E(\mu + \widetilde{\mu}, pk)$$

- μ: message
- pk: public key
- $c = E(\mu, pk)$: ciphertext
- Additive Homomorphism:

$$E(\mu, pk) \oplus E(\widetilde{\mu}, pk) = E(\mu + \widetilde{\mu}, pk)$$

Multiplicative Homomorphism:

$$E(\mu, pk) \odot E(\widetilde{\mu}, pk) = E(\mu \cdot \widetilde{\mu}, pk)$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣…

• Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.

< 同 > < 三 > < 三 >

- Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.
 - ${\mathcal R}$ is the set of polynomials of degree less than n with integer coefficients.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.
 - ${\mathcal R}$ is the set of polynomials of degree less than n with integer coefficients.
 - Addition: standard polynomial addition

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.
 - ${\mathcal R}$ is the set of polynomials of degree less than n with integer coefficients.
 - Addition: standard polynomial addition
 - Multiplication: standard polynomial multiplication and reduction modulo $\Phi(x)=x^n+1$

< 同 > < 三 > < 三 > -

- Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.
 - $\mathcal R$ is the set of polynomials of degree less than n with integer coefficients.
 - Addition: standard polynomial addition
 - Multiplication: standard polynomial multiplication and reduction modulo $\Phi(x) = x^n + 1$
- \mathcal{R}_q denotes the ring \mathcal{R} reduced modulo q;

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.
 - ${\mathcal R}$ is the set of polynomials of degree less than n with integer coefficients.
 - Addition: standard polynomial addition
 - Multiplication: standard polynomial multiplication and reduction modulo $\Phi(x)=x^n+1$
- \mathcal{R}_q denotes the ring \mathcal{R} reduced modulo q;

- i.e.,
$$\mathcal{R}_q = \mathbb{Z}_q[x]/\Phi(x)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.
 - ${\mathcal R}$ is the set of polynomials of degree less than n with integer coefficients.
 - Addition: standard polynomial addition
 - Multiplication: standard polynomial multiplication and reduction modulo $\Phi(x)=x^n+1$
- \mathcal{R}_q denotes the ring \mathcal{R} reduced modulo q;

- i.e.,
$$\mathcal{R}_q = \mathbb{Z}_q[x]/\Phi(x)$$

• $a \in \mathcal{R}_q$ is a polynomial $a = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$

(人間) トイヨト (日) (日)

- Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.
 - ${\mathcal R}$ is the set of polynomials of degree less than n with integer coefficients.
 - Addition: standard polynomial addition
 - Multiplication: standard polynomial multiplication and reduction modulo $\Phi(x)=x^n+1$
- \mathcal{R}_q denotes the ring \mathcal{R} reduced modulo q;

- i.e.,
$$\mathcal{R}_q = \mathbb{Z}_q[x]/\Phi(x)$$

- $a \in \mathcal{R}_q$ is a polynomial $a = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$
- $a_i \in (-q/2, q/2)$ for i = 0, 1, ..., n-1

- Consider the ring of polynomials $\mathcal{R} = \mathbb{Z}[x]/\Phi(x)$, where $\Phi(x)$ is cyclotomic polynomial of degree n, where n is a power of 2.
 - ${\mathcal R}$ is the set of polynomials of degree less than n with integer coefficients.
 - Addition: standard polynomial addition
 - Multiplication: standard polynomial multiplication and reduction modulo $\Phi(x)=x^n+1$
- \mathcal{R}_q denotes the ring \mathcal{R} reduced modulo q;

- i.e.,
$$\mathcal{R}_q = \mathbb{Z}_q[x]/\Phi(x)$$

- $a \in \mathcal{R}_q$ is a polynomial $a = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$
- $a_i \in (-q/2, q/2)$ for $i = 0, 1, \dots, n-1$
- **Example:** q = 7, $F_7 = \{-3, -2, -1, 0, 1, 2, 3\}$

イロト イポト イヨト イヨト 三日

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

・ロト ・四ト ・ヨト ・ヨト

э

The operation a ← D_{R,σ} outputs a polynomial in R, whose coefficients are sampled from a normal distribution with 0 mean and standard deviation σ.

- The operation a ← D_{R,σ} outputs a polynomial in R, whose coefficients are sampled from a normal distribution with 0 mean and standard deviation σ.
 - In other words, it outputs a polynomial with "small" coefficients if σ is small (e.g. $\sigma = 3.5$)

- The operation a ← D_{R,σ} outputs a polynomial in R, whose coefficients are sampled from a normal distribution with 0 mean and standard deviation σ.
 - In other words, it outputs a polynomial with "small" coefficients if σ is small (e.g. $\sigma = 3.5$)
- Let B_0 be a bound on normal distribution with $\mu = 0$ and σ

- The operation a ← D_{R,σ} outputs a polynomial in R, whose coefficients are sampled from a normal distribution with 0 mean and standard deviation σ.
 - In other words, it outputs a polynomial with "small" coefficients if σ is small (e.g. $\sigma=3.5)$
- Let B_0 be a bound on normal distribution with $\mu=0$ and σ
- We can use error function erf to compute a bound for the samples

- The operation a ← D_{R,σ} outputs a polynomial in R, whose coefficients are sampled from a normal distribution with 0 mean and standard deviation σ.
 - In other words, it outputs a polynomial with "small" coefficients if σ is small (e.g. $\sigma=3.5)$
- Let B_0 be a bound on normal distribution with $\mu=0$ and σ
- We can use error function erf to compute a bound for the samples
- For a normal distribution with $\mu = 0$ and σ , erf $\left(\frac{a}{\sigma\sqrt{2}}\right)$ is the probability that a sample lies in (-a, a) for a positive a.

(4月) (3日) (3日) 日

- The operation a ← D_{R,σ} outputs a polynomial in R, whose coefficients are sampled from a normal distribution with 0 mean and standard deviation σ.
 - In other words, it outputs a polynomial with "small" coefficients if σ is small (e.g. $\sigma=3.5)$
- Let B_0 be a bound on normal distribution with $\mu = 0$ and σ
- We can use error function erf to compute a bound for the samples
- For a normal distribution with $\mu = 0$ and σ , erf $\left(\frac{a}{\sigma\sqrt{2}}\right)$ is the probability that a sample lies in (-a, a) for a positive a.
- Then, ${\rm erfc}\left(\frac{a}{\sigma\sqrt{2}}\right)$ gives the probability that a sample lies outside of (-a,a).

イロト 不得 とくほ とくほ とうほう

- The operation a ← D_{R,σ} outputs a polynomial in R, whose coefficients are sampled from a normal distribution with 0 mean and standard deviation σ.
 - In other words, it outputs a polynomial with "small" coefficients if σ is small (e.g. $\sigma=3.5)$
- Let B_0 be a bound on normal distribution with $\mu=0$ and σ
- We can use error function erf to compute a bound for the samples
- For a normal distribution with $\mu = 0$ and σ , erf $\left(\frac{a}{\sigma\sqrt{2}}\right)$ is the probability that a sample lies in (-a, a) for a positive a.
- Then, ${\rm erfc}\left(\frac{a}{\sigma\sqrt{2}}\right)$ gives the probability that a sample lies outside of (-a,a).
- Pick a B_0 so that $\operatorname{erfc}\left(\frac{B_0}{\sigma\sqrt{2}}\right)$ is negligible.

イロト 不得 とくほ とくほ とうほう

Hard Problems

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

<ロ> (日) (日) (日) (日) (日)

2

• Two hard problems can be given:

< □ > < □ > < □ > < □ > < □ >

- Two hard problems can be given:
 - **Ring-LWE Search Problem:** Pick $a, s \in \mathcal{R}_q$ and $e \leftarrow D_{\mathcal{R},\sigma}$ and set $b \leftarrow as + e \pmod{q}$. The search problem is, given the pair (a, b), to output the value s.

(四) (日) (日)

- Two hard problems can be given:
 - **Ring-LWE Search Problem:** Pick $a, s \in \mathcal{R}_q$ and $e \leftarrow D_{\mathcal{R},\sigma}$ and set $b \leftarrow as + e \pmod{q}$. The search problem is, given the pair (a, b), to output the value s.
 - **Ring LWE Decision Problem:** Given (a, b) where $a, b \in \mathcal{R}_q$, determine which of the following two cases holds:

A (1) < (2) < (2) </p>

- Two hard problems can be given:
 - **Ring-LWE Search Problem:** Pick $a, s \in \mathcal{R}_q$ and $e \leftarrow D_{\mathcal{R},\sigma}$ and set $b \leftarrow as + e \pmod{q}$. The search problem is, given the pair (a, b), to output the value s.
 - **Ring LWE Decision Problem:** Given (a, b) where $a, b \in \mathcal{R}_q$, determine which of the following two cases holds:

 $\bigcirc b$ is chosen uniformly at random $(b \leftarrow \mathcal{R}_q)$

- Two hard problems can be given:
 - **Ring-LWE Search Problem:** Pick $a, s \in \mathcal{R}_q$ and $e \leftarrow D_{\mathcal{R},\sigma}$ and set $b \leftarrow as + e \pmod{q}$. The search problem is, given the pair (a, b), to output the value s.
 - **Ring LWE Decision Problem:** Given (a, b) where $a, b \in \mathcal{R}_q$, determine which of the following two cases holds:
 - (a) b is chosen uniformly at random $(b \leftarrow \mathcal{R}_q)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Two hard problems can be given:
 - **Ring-LWE Search Problem:** Pick $a, s \in \mathcal{R}_q$ and $e \leftarrow D_{\mathcal{R},\sigma}$ and set $b \leftarrow as + e \pmod{q}$. The search problem is, given the pair (a, b), to output the value s.
 - **Ring LWE Decision Problem:** Given (a, b) where $a, b \in \mathcal{R}_q$, determine which of the following two cases holds:
 - 0 b is chosen uniformly at random $(b \leftarrow \mathcal{R}_q)$

$$) \quad b \leftarrow a \cdot s + e \text{ where } s \leftarrow \mathcal{R}_q \text{ and } e \leftarrow D_{\mathcal{R},\sigma}$$

• R-LWE Problems are still hard even if $s \leftarrow D_{\mathcal{R},\sigma}$

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

▲御▶ ▲ 臣▶ ▲ 臣▶

• We pick two prime integers p and q such that $p \ll q$, a ring \mathcal{R} , and a normal distribution with standard deviation σ . (e.g., p = 2)

- We pick two prime integers p and q such that $p \ll q$, a ring \mathcal{R} , and a normal distribution with standard deviation σ . (e.g., p = 2)
- Security depends on the ring dimension n,q and σ .

- We pick two prime integers p and q such that $p \ll q$, a ring \mathcal{R} , and a normal distribution with standard deviation σ . (e.g., p = 2)
- Security depends on the ring dimension n,q and $\sigma.$
- $\{p, q, \mathcal{R}, \sigma\}$: public domain parameters.

- We pick two prime integers p and q such that $p \ll q$, a ring \mathcal{R} , and a normal distribution with standard deviation σ . (e.g., p = 2)
- Security depends on the ring dimension n,q and $\sigma.$
- $\{p, q, \mathcal{R}, \sigma\}$: public domain parameters.

- We pick two prime integers p and q such that $p \ll q$, a ring \mathcal{R} , and a normal distribution with standard deviation σ . (e.g., p = 2)
- Security depends on the ring dimension n,q and $\sigma.$
- $\{p, q, \mathcal{R}, \sigma\}$: public domain parameters.
- We pick two prime integers p and q such that $p \ll q$, a ring \mathcal{R} , and a normal distribution with standard deviation σ . (e.g., p = 2)
- Security depends on the ring dimension n,q and σ .
- $\{p, q, \mathcal{R}, \sigma\}$: public domain parameters.

$$\begin{array}{ll} \textcircled{0} & s, e \leftarrow D_{\mathcal{R},\sigma} \\ \textcircled{0} & a \leftarrow \mathcal{R}_q \\ \textcircled{0} & b \leftarrow as + pe \pmod{q} \end{array}$$

- We pick two prime integers p and q such that $p \ll q$, a ring \mathcal{R} , and a normal distribution with standard deviation σ . (e.g., p = 2)
- Security depends on the ring dimension n,q and σ .
- $\{p, q, \mathcal{R}, \sigma\}$: public domain parameters.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- We pick two prime integers p and q such that $p \ll q$, a ring \mathcal{R} , and a normal distribution with standard deviation σ . (e.g., p = 2)
- Security depends on the ring dimension n,q and σ .
- $\{p, q, \mathcal{R}, \sigma\}$: public domain parameters.

A PKC based on R-LWE - Encryption

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

▲御▶ ▲ 臣▶ ▲ 臣▶

A PKC based on R-LWE - Encryption

• Let $\mu \in \mathcal{R}_p$ be an arbitrary message

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A PKC based on R-LWE - Encryption

• Let $\mu \in \mathcal{R}_p$ be an arbitrary message

 $e_0, e_1, e_2 \leftarrow D_{\mathcal{R},\sigma}$

Let μ ∈ R_p be an arbitrary message 0 e₀, e₁, e₂ ← D_{R,σ} 0 c₀ ← be₀ + pe₁ + μ

周 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Let μ ∈ R_p be an arbitrary message
e₀, e₁, e₂ ← D_{R,σ}
c₀ ← be₀ + pe₁ + μ
c₁ ← ae₀ + pe₂

通 と く ヨ と く ヨ と

• Let $\mu \in \mathcal{R}_p$ be an arbitrary message

- $e_0, e_1, e_2 \leftarrow D_{\mathcal{R},\sigma}$
- $\bigcirc c_0 \leftarrow be_0 + pe_1 + \mu$
- $\bigcirc c_1 \leftarrow ae_0 + pe_2$
 - Ciphertext: (c_0, c_1)

伺 ト イヨ ト イヨト

A PKC based on R-LWE - Decryption

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

< ロ > < 回 > < 回 > < 回 > < 回 >

•
$$\mu \leftarrow (c_0 - c_1 s \pmod{q}) \pmod{p}$$

< ロ > < 回 > < 回 > < 回 > < 回 >

- $\mu \leftarrow (c_0 c_1 s \pmod{q}) \pmod{p}$
- Decryption is a vector product $\langle (c_0, c_1), (1, -s) \rangle$ where

- $\mu \leftarrow (c_0 c_1 s \pmod{q}) \pmod{p}$
- \bullet Decryption is a vector product $\langle (c_0,c_1),(1,-s~)\rangle$ where
 - secret key: $\left(1,-s\right.\right)$

- $\mu \leftarrow (c_0 c_1 s \pmod{q}) \pmod{p}$
- Decryption is a vector product $\langle (c_0, c_1), (1, -s) \rangle$ where
 - secret key: (1, -s)
 - ciphertext: (c_0, c_1)

Correctness of the decryption operation

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

$$\mu = (c_0 - c_1 s \pmod{q}) \pmod{p}$$

= $((be_0 - pe_1 + \mu) - (ase_0 - pe_2 s) \pmod{q}) \pmod{p}$
= $(p(ee_0 + e_1 - e_2 s) + \mu \pmod{q}) \pmod{p}$
= $(p \cdot \text{``small''} + \mu \pmod{q}) \pmod{p}$

$$\mu = (c_0 - c_1 s \pmod{q}) \pmod{p}$$

= $((be_0 - pe_1 + \mu) - (ase_0 - pe_2 s) \pmod{q}) \pmod{p}$
= $(p(ee_0 + e_1 - e_2 s) + \mu \pmod{q}) \pmod{p}$
= $(p \cdot \text{``small''} + \mu \pmod{q}) \pmod{p}$

• $(p \cdot \text{``small''} + \mu \pmod{q}) \pmod{p}$ will return μ only if $\|p \cdot \text{``small''} + \mu\|_{\infty} < \|p \cdot \text{``small''} + p\|_{\infty} < \frac{q}{2}.$

同 ト イヨ ト イヨ ト ニヨ

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

э

• For correct decryption, we should have

$$\|p(ee_0 + e_1 - e_2s) + p\|_{\infty} < \frac{q}{2},$$

where s, e, e_0, e_1, e_2 are sampled from the same distribution.

伺 ト イヨ ト イヨト

• For correct decryption, we should have

$$||p(ee_0 + e_1 - e_2s) + p||_{\infty} < \frac{q}{2},$$

where s, e, e_0, e_1, e_2 are sampled from the same distribution.

• Also they are all in $\mathcal{R} = \mathbb{Z}[x]/F(x)$

周 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

э

•
$$||p(ee_0 + e_1 - e_2s + 1)||_{\infty} < \frac{q}{2}$$

▲御▶ ▲ 陸▶ ▲ 陸▶

э

- $||p(ee_0 + e_1 e_2s + 1)||_{\infty} < \frac{q}{2}$
- B_0 is an upper bound for coefficients of e, e_0, e_1, e_2 and s where $e, e_0, e_1, e_2, s \in \mathcal{R} = \mathbb{Z}[x]/F(x)$

伺 と く ヨ と く ヨ と

- $||p(ee_0 + e_1 e_2s + 1)||_{\infty} < \frac{q}{2}$
- B_0 is an upper bound for coefficients of e, e_0, e_1, e_2 and s where $e, e_0, e_1, e_2, s \in \mathcal{R} = \mathbb{Z}[x]/F(x)$
- What is the upper bound for the coefficients of ee_0 and e_2s ?

- $||p(ee_0 + e_1 e_2s + 1)||_{\infty} < \frac{q}{2}$
- B_0 is an upper bound for coefficients of e, e_0, e_1, e_2 and s where $e, e_0, e_1, e_2, s \in \mathcal{R} = \mathbb{Z}[x]/F(x)$
- What is the upper bound for the coefficients of ee_0 and e_2s ?
- \bullet Infinity norm of a polynomial $\|e\|_\infty$ is the maximum of its coefficients.

- $||p(ee_0 + e_1 e_2s + 1)||_{\infty} < \frac{q}{2}$
- B_0 is an upper bound for coefficients of e, e_0, e_1, e_2 and s where $e, e_0, e_1, e_2, s \in \mathcal{R} = \mathbb{Z}[x]/F(x)$
- What is the upper bound for the coefficients of ee_0 and e_2s ?
- Infinity norm of a polynomial $\|e\|_\infty$ is the maximum of its coefficients.
- $\|e\|_{\infty}, \|e_0\|_{\infty}, \|e_1\|_{\infty}, \|e_2\|_{\infty}, \|s\|_{\infty} < B_0$

伺 と く き と く き と … き

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

•
$$\mathcal{R} = \mathbb{Z}[x]/\Phi_8(x)$$
 (m = 8, n = 4)

• • = • • = •

•
$$\mathcal{R} = \mathbb{Z}[x]/\Phi_8(x)$$
 ($m = 8, n = 4$)

•
$$\Phi_8(x) = x^4 + 1$$

•
$$c(x) = a(x)b(x)$$
 where $a(x), b(x), c(x) \in \mathcal{R}$

伺 ト イヨト イヨト

•
$$\mathcal{R} = \mathbb{Z}[x]/\Phi_8(x)$$
 $(m = 8, n = 4)$
• $\Phi_8(x) = x^4 + 1$
• $c(x) = a(x)b(x)$ where $a(x), b(x), c(x) \in \mathcal{R}$
- $c_0 = a_0b_0 - a_1b_3 - a_2b_2 - a_3b_1$
- $c_1 = a_0b_1 + a_1b_0 - a_2b_3 - a_3b_2$

•
$$\mathcal{R} = \mathbb{Z}[x]/\Phi_8(x)$$
 $(m = 8, n = 4)$
• $\Phi_8(x) = x^4 + 1$
• $c(x) = a(x)b(x)$ where $a(x), b(x), c(x) \in \mathcal{R}$
- $c_0 = a_0b_0 - a_1b_3 - a_2b_2 - a_3b_1$
- $c_1 = a_0b_1 + a_1b_0 - a_2b_3 - a_3b_2$
- $c_2 = a_0b_2 + a_1b_1 + a_2b_0 - a_3b_3$
- $c_3 = a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0$

•
$$\mathcal{R} = \mathbb{Z}[x]/\Phi_8(x)$$
 $(m = 8, n = 4)$
• $\Phi_8(x) = x^4 + 1$
• $c(x) = a(x)b(x)$ where $a(x), b(x), c(x) \in \mathcal{R}$
- $c_0 = a_0b_0 - a_1b_3 - a_2b_2 - a_3b_1$
- $c_1 = a_0b_1 + a_1b_0 - a_2b_3 - a_3b_2$
- $c_2 = a_0b_2 + a_1b_1 + a_2b_0 - a_3b_3$
- $c_3 = a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0$

• Every coefficient in c_i is the sum of four (n = 4) product terms.

•
$$\mathcal{R} = \mathbb{Z}[x]/\Phi_8(x) \ (m = 8, n = 4)$$

• $\Phi_8(x) = x^4 + 1$
• $c(x) = a(x)b(x) \text{ where } a(x), b(x), c(x) \in \mathcal{R}$
- $c_0 = a_0b_0 - a_1b_3 - a_2b_2 - a_3b_1$
- $c_1 = a_0b_1 + a_1b_0 - a_2b_3 - a_3b_2$
- $c_2 = a_0b_2 + a_1b_1 + a_2b_0 - a_3b_3$
- $c_3 = a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0$

- Every coefficient in c_i is the sum of four (n = 4) product terms.
- An upper bound for a product term is B_0^2

伺 ト イヨ ト イヨ ト
Correctness Constraint - Example

•
$$\mathcal{R} = \mathbb{Z}[x]/\Phi_8(x)$$
 $(m = 8, n = 4)$
• $\Phi_8(x) = x^4 + 1$
• $c(x) = a(x)b(x)$ where $a(x), b(x), c(x) \in \mathcal{R}$
- $c_0 = a_0b_0 - a_1b_3 - a_2b_2 - a_3b_1$
- $c_1 = a_0b_1 + a_1b_0 - a_2b_3 - a_3b_2$
- $c_2 = a_0b_2 + a_1b_1 + a_2b_0 - a_3b_3$
- $c_3 = a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0$

- Every coefficient in c_i is the sum of four (n = 4) product terms.
- An upper bound for a product term is B_0^2
- An upper bound for a coefficient is then nB_0^2 (a bit loose upper bound)

Correctness Constraint - Cont.

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

э

Correctness Constraint - Cont.

• Let
$$\eta = ee_0 + e_1 - e_2s$$

イロト イヨト イヨト イヨト

æ

• Let
$$\eta = ee_0 + e_1 - e_2s$$

• An upper bound for η is, then, $nB_0^2 + B_0 + nB_0^2$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Let
$$\eta = ee_0 + e_1 - e_2s$$

• An upper bound for η is, then, $nB_0^2+B_0+nB_0^2$

•
$$\|p\eta + \mu\|_{\infty} < p(nB_0^2 + B_0 + nB_0^2 + 1) < \frac{q}{2} \Rightarrow q > 2p(2nB_0^2 + B_0 + 1)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

• Let
$$\eta = ee_0 + e_1 - e_2s$$

• An upper bound for η is, then, $nB_0^2 + B_0 + nB_0^2$

•
$$\|p\eta + \mu\|_{\infty} < p(nB_0^2 + B_0 + nB_0^2 + 1) < \frac{q}{2} \Rightarrow q > 2p(2nB_0^2 + B_0 + 1)$$

• Let $B=(2nB_0^2+B_0)$ bound for η then q>2p(B+1)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

同 ト 4 ヨ ト 4 ヨ ト

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$\mu \in \mathcal{R}_p$$

• $c = E(\mu, pk)$

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

•
$$\mu \in \mathcal{R}_p$$

• $c = E(\mu, pk)$
• $c \in \mathcal{R}_q^2$

• • = • • = •

- $\mu \in \mathcal{R}_p$
- $\bullet \ c = E(\mu, pk)$
- $c \in \mathcal{R}_q^2$
- Additive Homomorphism:

$$E(\mu, pk) \oplus E(\widetilde{\mu}, pk) = E(\mu + \widetilde{\mu}, pk)$$

• • = • • = •

- $\mu \in \mathcal{R}_p$
- $\bullet \ c = E(\mu, pk)$
- $c \in \mathcal{R}_q^2$
- Additive Homomorphism:

$$E(\mu, pk) \oplus E(\widetilde{\mu}, pk) = E(\mu + \widetilde{\mu}, pk)$$

Multiplicative Homomorphism:

$$E(\mu, pk) \odot E(\widetilde{\mu}, pk) = E(\mu \cdot \widetilde{\mu}, pk)$$

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

▲御▶ ▲ 陸▶ ▲ 陸▶

• Our R-LWE-based PKC system is additively homomorphic

★ Ξ →

- Our R-LWE-based PKC system is additively homomorphic
 - Consider two ciphertexts c and $\widetilde{c},$ which encrypts μ and $\widetilde{\mu},$ respectively,

• • = • • = •

- Our R-LWE-based PKC system is additively homomorphic
 - Consider two ciphertexts c and $\widetilde{c},$ which encrypts μ and $\widetilde{\mu},$ respectively,
 - $c = (c_0, c_1)$

伺 ト イヨ ト イヨト

- Our R-LWE-based PKC system is additively homomorphic
 - Consider two ciphertexts c and $\widetilde{c},$ which encrypts μ and $\widetilde{\mu},$ respectively,

•
$$c = (c_0, c_1)$$

•
$$\widetilde{c} = (\widetilde{c_0}, \widetilde{c_1})$$

伺 ト イヨト イヨト

- Our R-LWE-based PKC system is additively homomorphic
 - Consider two ciphertexts c and $\widetilde{c},$ which encrypts μ and $\widetilde{\mu},$ respectively,

•
$$c = (c_0, c_1)$$

•
$$\widetilde{c} = (\widetilde{c_0}, \widetilde{c_1})$$

- Consider also the decryption operation

$$\langle (c_0, c_1), (1, -s) \rangle = (c_0 - sc_1 = \mu + p\eta \pmod{q}) \pmod{p}$$

$$\langle (\widetilde{c_0}, \widetilde{c_1}), (1, -s) \rangle = (\widetilde{c_0} - s\widetilde{c_1} = \widetilde{\mu} + p\widetilde{\eta} \pmod{q}) \pmod{p}$$

(日本) (日本) (日本)

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

▲御▶ ▲ 陸▶ ▲ 陸▶

• Our R-LWE-based PKC system is additively homomorphic

伺 ト イヨト イヨト

- Our R-LWE-based PKC system is additively homomorphic
 - Now, apply addition to ciphertexts $c+\widetilde{c}$ and decrypt

$$\begin{aligned} \langle c+\widetilde{c},(1,-s)\rangle &= (c_0 + \widetilde{c_0} - sc_1 - s\widetilde{c_1} \pmod{q}) \pmod{p} \\ &= (c_0 - sc_1 + \widetilde{c_0} - s\widetilde{c_1} \pmod{q}) \pmod{p} \\ &= (\mu + p\eta + \widetilde{\mu} + p\widetilde{\eta} \pmod{q}) \pmod{p} \\ &= (\mu + \widetilde{\mu} + p(\eta + \widetilde{\eta}) \pmod{q}) \pmod{p} \end{aligned}$$

• • = • • = •

- Our R-LWE-based PKC system is additively homomorphic
 - Now, apply addition to ciphertexts $c+\widetilde{c}$ and decrypt

$$\begin{aligned} \langle c+\widetilde{c},(1,-s)\rangle &= (c_0+\widetilde{c_0}-sc_1-s\widetilde{c_1}\pmod{q})\pmod{p} \\ &= (c_0-sc_1+\widetilde{c_0}-s\widetilde{c_1}\pmod{q})\pmod{p} \\ &= (\mu+p\eta+\widetilde{\mu}+p\widetilde{\eta}\pmod{q})\pmod{p} \\ &= (\mu+\widetilde{\mu}+p(\eta+\widetilde{\eta})\pmod{q})\pmod{p} \end{aligned}$$

- So long as $\|p(\eta + \tilde{\eta}) + (\mu + \tilde{\mu})\|_{\infty} < \frac{q}{2}$, the modulo q reduction does not happen \Rightarrow CORRECT decryption

- Our R-LWE-based PKC system is additively homomorphic
 - Now, apply addition to ciphertexts $c+\widetilde{c}$ and decrypt

$$\begin{aligned} \langle c+\widetilde{c},(1,-s)\rangle &= (c_0+\widetilde{c_0}-sc_1-s\widetilde{c_1}\pmod{q})\pmod{p} \\ &= (c_0-sc_1+\widetilde{c_0}-s\widetilde{c_1}\pmod{q})\pmod{p} \\ &= (\mu+p\eta+\widetilde{\mu}+p\widetilde{\eta}\pmod{q})\pmod{p} \\ &= (\mu+\widetilde{\mu}+p(\eta+\widetilde{\eta})\pmod{q})\pmod{p} \end{aligned}$$

- So long as $\|p(\eta + \tilde{\eta}) + (\mu + \tilde{\mu})\|_{\infty} < \frac{q}{2}$, the modulo q reduction does not happen \Rightarrow CORRECT decryption
- An upper bound for both $p\eta$ and $p\widetilde{\eta}$ is pB

- Our R-LWE-based PKC system is additively homomorphic
 - Now, apply addition to ciphertexts $c+\widetilde{c}$ and decrypt

$$\begin{aligned} \langle c+\widetilde{c},(1,-s)\rangle &= (c_0+\widetilde{c_0}-sc_1-s\widetilde{c_1}\pmod{q})\pmod{p} \\ &= (c_0-sc_1+\widetilde{c_0}-s\widetilde{c_1}\pmod{q})\pmod{p} \\ &= (\mu+p\eta+\widetilde{\mu}+p\widetilde{\eta}\pmod{q})\pmod{p} \\ &= (\mu+\widetilde{\mu}+p(\eta+\widetilde{\eta})\pmod{q})\pmod{p} \end{aligned}$$

- So long as $\|p(\eta + \tilde{\eta}) + (\mu + \tilde{\mu})\|_{\infty} < \frac{q}{2}$, the modulo q reduction does not happen \Rightarrow CORRECT decryption
- An upper bound for both $p\eta$ and $p\widetilde{\eta}$ is pB
- Then, an upper bound for $p(\eta+\widetilde{\eta})$ is the 2pB

- Our R-LWE-based PKC system is additively homomorphic
 - Now, apply addition to ciphertexts $c+\widetilde{c}$ and decrypt

$$\begin{aligned} \langle c+\widetilde{c},(1,-s)\rangle &= (c_0+\widetilde{c_0}-sc_1-s\widetilde{c_1}\pmod{q})\pmod{p} \\ &= (c_0-sc_1+\widetilde{c_0}-s\widetilde{c_1}\pmod{q})\pmod{p} \\ &= (\mu+p\eta+\widetilde{\mu}+p\widetilde{\eta}\pmod{q})\pmod{p} \\ &= (\mu+\widetilde{\mu}+p(\eta+\widetilde{\eta})\pmod{q})\pmod{p} \end{aligned}$$

- So long as $\|p(\eta + \tilde{\eta}) + (\mu + \tilde{\mu})\|_{\infty} < \frac{q}{2}$, the modulo q reduction does not happen \Rightarrow CORRECT decryption
- An upper bound for both $p\eta$ and $p\widetilde{\eta}$ is pB
- Then, an upper bound for $p(\eta + \widetilde{\eta})$ is the 2pB
- The noise increases linearly

$$\mu^{(1)}, \dots, \mu^{(l)} \to c^{(1)}, \dots, c^{(l)} \left\langle c^{(1)} + \dots + c^{(l)}, (1, -s) \right\rangle = \mu^{(1)} + \dots + \mu^{(l)} + p(\eta^{(1)} + \dots + \eta^{(l)})$$

伺 ト イヨト イヨト

$$\begin{split} \mu^{(1)}, \dots, \mu^{(l)} &\to c^{(1)}, \dots, c^{(l)} \\ \left\langle c^{(1)} + \dots + c^{(l)}, (1, -s) \right\rangle &= \mu^{(1)} + \dots + \mu^{(l)} + p(\eta^{(1)} + \dots + \eta^{(l)}) \\ \bullet \text{ An upper bound for } p(\eta^{(1)} + \dots + \eta^{(l)}) \text{ is then } lpB \end{split}$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

$$\mu^{(1)}, \dots, \mu^{(l)} \to c^{(1)}, \dots, c^{(l)}$$

$$\langle c^{(1)} + \dots + c^{(l)}, (1, -s) \rangle = \mu^{(1)} + \dots + \mu^{(l)} + p(\eta^{(1)} + \dots + \eta^{(l)})$$

• An upper bound for $p(\eta^{(1)}+\ldots+\eta^{(l)})$ is then lpB

• Eventually, the error term will exceed $\frac{q}{2}$ depending on l and p.

$$\mu^{(1)}, \dots, \mu^{(l)} \to c^{(1)}, \dots, c^{(l)}$$

$$\langle c^{(1)} + \dots + c^{(l)}, (1, -s) \rangle = \mu^{(1)} + \dots + \mu^{(l)} + p(\eta^{(1)} + \dots + \eta^{(l)})$$

- An upper bound for $p(\eta^{(1)}+\ldots+\eta^{(l)})$ is then lpB
- Eventually, the error term will exceed $\frac{q}{2}$ depending on l and p.
- This means that we can perform only a limited number of homomorphic additions of ciphertexts, whereby this number is determined mainly by p and q.

$$\mu^{(1)}, \dots, \mu^{(l)} \to c^{(1)}, \dots, c^{(l)}$$

$$\langle c^{(1)} + \dots + c^{(l)}, (1, -s) \rangle = \mu^{(1)} + \dots + \mu^{(l)} + p(\eta^{(1)} + \dots + \eta^{(l)})$$

• An upper bound for $p(\eta^{(1)}+\ldots+\eta^{(l)})$ is then lpB

- Eventually, the error term will exceed $\frac{q}{2}$ depending on l and p.
- This means that we can perform only a limited number of homomorphic additions of ciphertexts, whereby this number is determined mainly by p and q.
- This is what is known as SOMEWHAT HOMOMORPHIC ENCRYPTION system (SWHE or SHE)

Multiplicative Homomorphism

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

.

• Our R-LWE-based PKC supports homomorphic multiplication of ciphertexts

• • = • • = •

- Our R-LWE-based PKC supports homomorphic multiplication of ciphertexts
 - Suppose two ciphertexts $c = (c_0, c_1)$ and $\tilde{c} = (\tilde{c_0}, \tilde{c_1})$ encrypting μ and $\tilde{\mu}$, respectively.

伺 ト イヨト イヨト

- Our R-LWE-based PKC supports homomorphic multiplication of ciphertexts
 - Suppose two ciphertexts $c = (c_0, c_1)$ and $\tilde{c} = (\tilde{c_0}, \tilde{c_1})$ encrypting μ and $\tilde{\mu}$, respectively.
 - Define tensor product of c and \widetilde{c} as

$$c \otimes \widetilde{c} = (c_0 \widetilde{c_0}, c_0 \widetilde{c_1}, c_1 \widetilde{c_0}, c_1 \widetilde{c_1}) = (d_0, d_1, d_2, d_3)$$

Multiplicative Homomorphism - Decryption for Mutiplication of Ciphertexts

伺 ト イヨト イヨト

Multiplicative Homomorphism - Decryption for Mutiplication of Ciphertexts

• Now, we have four-dimensional ciphertext, which will decrypt with respect to the "secret key" vector $(1,-s)\otimes(1,-s)=(1,-s,-s,s^2)$ since
Multiplicative Homomorphism - Decryption for Mutiplication of Ciphertexts

• Now, we have four-dimensional ciphertext, which will decrypt with respect to the "secret key" vector $(1, -s) \otimes (1, -s) = (1, -s, -s, s^2)$ since $\langle c \otimes \tilde{c}, (1, -s, -s, s^2) \rangle = (d_0 - d_1 s - d_2 s + d_3 s^2 \pmod{q}) \pmod{q}$ $= c_0 \tilde{c}_0 - c_0 \tilde{c}_1 s - d_2 s + d_3 s^2 \pmod{q}$ $= (c_0 - c_1 s) (\tilde{c}_0 - \tilde{c}_1 s) \pmod{q}$ $= (\mu + p\eta) (\tilde{\mu} + p\tilde{\eta}) \pmod{q}$ $= (\mu \mu + p(\mu \tilde{\eta} + \tilde{\mu}\eta + p\eta \tilde{\eta}) \pmod{q}) \pmod{q}$ $= (\mu \tilde{\mu} + p(\mu \tilde{\eta} + \tilde{\mu}\eta + p\eta \tilde{\eta}) \pmod{q})$

▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー ∽へ⊙

Multiplicative Homomorphism - Decryption for Mutiplication of Ciphertexts

- Now, we have four-dimensional ciphertext, which will decrypt with respect to the "secret key" vector $(1, -s) \otimes (1, -s) = (1, -s, -s, s^2)$ since $\langle c \otimes \tilde{c}, (1, -s, -s, s^2) \rangle = (d_0 - d_1 s - d_2 s + d_3 s^2 \pmod{q}) \pmod{q}$ $= c_0 \tilde{c_0} - c_0 \tilde{c_1} s - c_1 \tilde{c_0} s + c_1 \tilde{c_1} s^2$ $= (c_0 - c_1 s) (\tilde{c_0} - \tilde{c_1} s) \pmod{q}$ $= (\mu + p\eta) (\tilde{\mu} + p\tilde{\eta}) \pmod{q}$ $= (\mu \tilde{\mu} + p(\mu \tilde{\eta} + \tilde{\mu} \eta + p\eta \tilde{\eta}) \pmod{q}) \pmod{q}$ $= (\mu \tilde{\mu} + p\eta_f \pmod{q}) \pmod{q}$
- $\bullet\,$ Therefore, $c\otimes \widetilde{c}$ is an encryption of $\mu\widetilde{\mu}$ under the secret key $(1,-s,-s,s^2)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Erkay Savaş A Very Brief Introduction to Lattice-Based Homomorphic Encryp

• • = • • =

•
$$\langle c \otimes \widetilde{c}, (1, -s, -s, s^2) \rangle = (\mu \widetilde{\mu} + p \eta_f \pmod{q}) \pmod{p}$$

• • = • • =

•
$$\langle c \otimes \tilde{c}, (1, -s, -s, s^2) \rangle = (\mu \tilde{\mu} + p \eta_f \pmod{q}) \pmod{p}$$

• $\eta_f = \mu \tilde{\eta} + \tilde{\mu} \eta + p \eta \tilde{\eta}$

• • = • • =

• $\langle c \otimes \widetilde{c}, (1, -s, -s, s^2) \rangle = (\mu \widetilde{\mu} + p \eta_f \pmod{q}) \pmod{p}$

•
$$\eta_f = \mu \tilde{\eta} + \tilde{\mu} \eta + p \eta \tilde{\eta}$$

• For correct decryption $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < \frac{q}{2}$

- $\langle c \otimes \widetilde{c}, (1, -s, -s, s^2) \rangle = (\mu \widetilde{\mu} + p \eta_f \pmod{q}) \pmod{p}$
- $\eta_f = \mu \tilde{\eta} + \tilde{\mu} \eta + p \eta \tilde{\eta}$
- For correct decryption $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < \frac{q}{2}$
- $\bullet \ \|\mu\|_{\infty}\,, \|\widetilde{\mu}\|_{\infty}$

同 ト イヨ ト イヨ ト ニヨー

- $\langle c \otimes \widetilde{c}, (1, -s, -s, s^2) \rangle = (\mu \widetilde{\mu} + p \eta_f \pmod{q}) \pmod{p}$
- $\eta_f = \mu \tilde{\eta} + \tilde{\mu} \eta + p \eta \tilde{\eta}$
- For correct decryption $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < \frac{q}{2}$
- $\bullet \ \|\mu\|_{\infty}\,, \|\widetilde{\mu}\|_{\infty}$
- $\left\|\eta_{f}\right\|_{\infty} < pB + pB + pB^{2}$

同 ト イヨ ト イヨ ト ニヨー

• $\langle c \otimes \widetilde{c}, (1, -s, -s, s^2) \rangle = (\mu \widetilde{\mu} + p \eta_f \pmod{q}) \pmod{p}$

•
$$\eta_f = \mu \tilde{\eta} + \tilde{\mu} \eta + p \eta \tilde{\eta}$$

- For correct decryption $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < \frac{q}{2}$
- $\|\mu\|_{\infty}, \|\widetilde{\mu}\|_{\infty} < p, \|\mu\widetilde{\mu}\|_{\infty} < p^2 \text{ and } \|\eta\|_{\infty}, \|\widetilde{\eta}\|_{\infty} < B.$
- $\left\|\eta_f\right\|_{\infty} < pB + pB + pB^2$
- $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < p^2 + p^2(2B + B^2) < \frac{q}{2}$

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

•
$$\langle c \otimes \widetilde{c}, (1, -s, -s, s^2) \rangle = (\mu \widetilde{\mu} + p \eta_f \pmod{q}) \pmod{p}$$

•
$$\eta_f = \mu \tilde{\eta} + \tilde{\mu} \eta + p \eta \tilde{\eta}$$

- For correct decryption $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < \frac{q}{2}$
- $\|\mu\|_{\infty}$, $\|\widetilde{\mu}\|_{\infty} < p$, $\|\mu\widetilde{\mu}\|_{\infty} < p^2$ and $\|\eta\|_{\infty}$, $\|\widetilde{\eta}\|_{\infty} < B$.
- $\left\|\eta_f\right\|_{\infty} < pB + pB + pB^2$
- $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < p^2 + p^2(2B + B^2) < \frac{q}{2}$
- $q > 2p^2(B^2 + 2B + 1)$

• $\langle c \otimes \widetilde{c}, (1, -s, -s, s^2) \rangle = (\mu \widetilde{\mu} + p \eta_f \pmod{q}) \pmod{p}$

•
$$\eta_f = \mu \tilde{\eta} + \tilde{\mu} \eta + p \eta \tilde{\eta}$$

- For correct decryption $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < \frac{q}{2}$
- $\|\mu\|_{\infty}, \|\widetilde{\mu}\|_{\infty} < p, \|\mu\widetilde{\mu}\|_{\infty} < p^2 \text{ and } \|\eta\|_{\infty}, \|\widetilde{\eta}\|_{\infty} < B.$
- $\left\|\eta_f\right\|_{\infty} < pB + pB + pB^2$
- $\|\mu\widetilde{\mu} + p\eta_f\|_{\infty} < p^2 + p^2(2B + B^2) < \frac{q}{2}$
- $q > 2p^2(B^2 + 2B + 1)$
- Noise increases quadratically.

伺い イラト イラト ニラー